We propose Laplace max-margin Markov networks (LapM3 N), and a general class of Bayesian M3 N (BM3 N) of which the LapM3 N is a special case with sparse structural bias, for robus...
In structured prediction problems, outputs are not confined to binary labels; they are often complex objects such as sequences, trees, or alignments. Support Vector Machine (SVM) ...
In this paper we discuss boosting algorithms that maximize the soft margin of the produced linear combination of base hypotheses. LPBoost is the most straightforward boosting algor...
Manfred K. Warmuth, Karen A. Glocer, S. V. N. Vish...
Multi-instance learning, as other machine learning tasks, also suffers from the curse of dimensionality. Although dimensionality reduction methods have been investigated for many ...
Wei Ping, Ye Xu, Kexin Ren, Chi-Hung Chi, Shen Fur...
Learning graphical models with hidden variables can offer semantic insights to complex data and lead to salient structured predictors without relying on expensive, sometime unatta...