We describe a new approach to speech recognition, in which all Hidden Markov Model (HMM) states share the same Gaussian Mixture Model (GMM) structure with the same number of Gauss...
Daniel Povey, Lukas Burget, Mohit Agarwal, Pinar A...
We present a new approximation algorithm based on an exact representation of the state space S, using decision diagrams, and of the transition rate matrix R, using Kronecker algeb...
Andrew S. Miner, Gianfranco Ciardo, Susanna Donate...
Motivated by the application of seismic inversion in the petroleum industry we consider a hidden Markov model with two hidden layers. The bottom layer is a Markov chain and given ...
We describe a framework for inducing probabilistic grammars from corpora of positive samples. First, samples are incorporated by adding ad-hoc rules to a working grammar; subseque...
We study a stock trading method based on dynamic bayesian networks to model the dynamics of the trend of stock prices. We design a three level hierarchical hidden Markov model (HHM...
Jangmin O, Jae Won Lee, Sung-Bae Park, Byoung-Tak ...