Sciweavers

86 search results - page 6 / 18
» Evolution of reward functions for reinforcement learning
Sort
View
ACL
2009
14 years 9 months ago
Reinforcement Learning for Mapping Instructions to Actions
In this paper, we present a reinforcement learning approach for mapping natural language instructions to sequences of executable actions. We assume access to a reward function tha...
S. R. K. Branavan, Harr Chen, Luke S. Zettlemoyer,...
110
Voted
NN
2010
Springer
187views Neural Networks» more  NN 2010»
14 years 6 months ago
Efficient exploration through active learning for value function approximation in reinforcement learning
Appropriately designing sampling policies is highly important for obtaining better control policies in reinforcement learning. In this paper, we first show that the least-squares ...
Takayuki Akiyama, Hirotaka Hachiya, Masashi Sugiya...
133
Voted
JMLR
2012
13 years 2 months ago
Contextual Bandit Learning with Predictable Rewards
Contextual bandit learning is a reinforcement learning problem where the learner repeatedly receives a set of features (context), takes an action and receives a reward based on th...
Alekh Agarwal, Miroslav Dudík, Satyen Kale,...
ICML
2000
IEEE
16 years 14 days ago
Reinforcement Learning in POMDP's via Direct Gradient Ascent
This paper discusses theoretical and experimental aspects of gradient-based approaches to the direct optimization of policy performance in controlled ??? ?s. We introduce ??? ?, a...
Jonathan Baxter, Peter L. Bartlett
95
Voted
NECO
2010
97views more  NECO 2010»
14 years 10 months ago
Derivatives of Logarithmic Stationary Distributions for Policy Gradient Reinforcement Learning
Most conventional Policy Gradient Reinforcement Learning (PGRL) algorithms neglect (or do not explicitly make use of) a term in the average reward gradient with respect to the pol...
Tetsuro Morimura, Eiji Uchibe, Junichiro Yoshimoto...