Sciweavers

86 search results - page 9 / 18
» Evolution of reward functions for reinforcement learning
Sort
View
EWRL
2008
15 years 1 months ago
Markov Decision Processes with Arbitrary Reward Processes
Abstract. We consider a control problem where the decision maker interacts with a standard Markov decision process with the exception that the reward functions vary arbitrarily ove...
Jia Yuan Yu, Shie Mannor, Nahum Shimkin
WSC
2008
15 years 2 months ago
On step sizes, stochastic shortest paths, and survival probabilities in Reinforcement Learning
Reinforcement Learning (RL) is a simulation-based technique useful in solving Markov decision processes if their transition probabilities are not easily obtainable or if the probl...
Abhijit Gosavi
FLAIRS
2004
15 years 1 months ago
State Space Reduction For Hierarchical Reinforcement Learning
er provides new techniques for abstracting the state space of a Markov Decision Process (MDP). These techniques extend one of the recent minimization models, known as -reduction, ...
Mehran Asadi, Manfred Huber
ICML
2005
IEEE
16 years 15 days ago
Proto-value functions: developmental reinforcement learning
This paper presents a novel framework called proto-reinforcement learning (PRL), based on a mathematical model of a proto-value function: these are task-independent basis function...
Sridhar Mahadevan
AROBOTS
1999
104views more  AROBOTS 1999»
14 years 11 months ago
Reinforcement Learning Soccer Teams with Incomplete World Models
We use reinforcement learning (RL) to compute strategies for multiagent soccer teams. RL may pro t signi cantly from world models (WMs) estimating state transition probabilities an...
Marco Wiering, Rafal Salustowicz, Jürgen Schm...