Sciweavers

86 search results - page 9 / 18
» Evolution of reward functions for reinforcement learning
Sort
View
EWRL
2008
15 years 3 months ago
Markov Decision Processes with Arbitrary Reward Processes
Abstract. We consider a control problem where the decision maker interacts with a standard Markov decision process with the exception that the reward functions vary arbitrarily ove...
Jia Yuan Yu, Shie Mannor, Nahum Shimkin
WSC
2008
15 years 3 months ago
On step sizes, stochastic shortest paths, and survival probabilities in Reinforcement Learning
Reinforcement Learning (RL) is a simulation-based technique useful in solving Markov decision processes if their transition probabilities are not easily obtainable or if the probl...
Abhijit Gosavi
FLAIRS
2004
15 years 2 months ago
State Space Reduction For Hierarchical Reinforcement Learning
er provides new techniques for abstracting the state space of a Markov Decision Process (MDP). These techniques extend one of the recent minimization models, known as -reduction, ...
Mehran Asadi, Manfred Huber
ICML
2005
IEEE
16 years 2 months ago
Proto-value functions: developmental reinforcement learning
This paper presents a novel framework called proto-reinforcement learning (PRL), based on a mathematical model of a proto-value function: these are task-independent basis function...
Sridhar Mahadevan
AROBOTS
1999
104views more  AROBOTS 1999»
15 years 1 months ago
Reinforcement Learning Soccer Teams with Incomplete World Models
We use reinforcement learning (RL) to compute strategies for multiagent soccer teams. RL may pro t signi cantly from world models (WMs) estimating state transition probabilities an...
Marco Wiering, Rafal Salustowicz, Jürgen Schm...