Sciweavers

206 search results - page 13 / 42
» Evolutionary Support Vector Regression Machines
Sort
View
ICML
2009
IEEE
15 years 6 months ago
Fast evolutionary maximum margin clustering
The maximum margin clustering approach is a recently proposed extension of the concept of support vector machines to the clustering problem. Briefly stated, it aims at finding a...
Fabian Gieseke, Tapio Pahikkala, Oliver Kramer
ML
2002
ACM
140views Machine Learning» more  ML 2002»
14 years 11 months ago
A Probabilistic Framework for SVM Regression and Error Bar Estimation
In this paper, we elaborate on the well-known relationship between Gaussian Processes (GP) and Support Vector Machines (SVM) under some convex assumptions for the loss functions. ...
Junbin Gao, Steve R. Gunn, Chris J. Harris, Martin...
NIPS
2003
15 years 1 months ago
Margin Maximizing Loss Functions
Margin maximizing properties play an important role in the analysis of classi£cation models, such as boosting and support vector machines. Margin maximization is theoretically in...
Saharon Rosset, Ji Zhu, Trevor Hastie
ICIP
2006
IEEE
16 years 1 months ago
Estimating Illumination Chromaticity via Kernel Regression
We propose a simple nonparametric linear regression tool, known as kernel regression (KR), to estimate the illumination chromaticity. We design a Gaussian kernel whose bandwidth i...
Vivek Agarwal, Andrei V. Gribok, Andreas Koschan, ...
ESANN
2007
15 years 1 months ago
Model Selection for Kernel Probit Regression
Abstract. The convex optimisation problem involved in fitting a kernel probit regression (KPR) model can be solved efficiently via an iteratively re-weighted least-squares (IRWLS)...
Gavin C. Cawley