Recurrent neural networks are theoretically capable of learning complex temporal sequences, but training them through gradient-descent is too slow and unstable for practical use i...
This paper introduces GNARL, an evolutionary program which induces recurrent neural networks that are structurally unconstrained. In contrast to constructive and destructive algor...
Gregory M. Saunders, Peter J. Angeline, Jordan B. ...
Clustering constitutes an ubiquitous problem when dealing with huge data sets for data compression, visualization, or preprocessing. Prototype-based neural methods such as neural g...
Alexander Hasenfuss, Barbara Hammer, Fabrice Rossi
This paper presents an study about a new Hybrid method GRASPES - for time series prediction, inspired in F. Takens theorem and based on a multi-start metaheuristic for combinatori...
Aranildo Rodrigues Lima Junior, Tiago Alessandro E...
An artificial neural network was trained to classify musical chords into four categories--major, dominant seventh, minor, or diminished seventh--independent of musical key. After ...