Compressive sensing (CS) is an emerging field based on the revelation that a small collection of linear projections of a sparse signal contains enough information for stable, sub-N...
Dror Baron, Shriram Sarvotham, Richard G. Baraniuk
The Compressive Sensing (CS) framework aims to ease the burden on analog-to-digital converters (ADCs) by reducing the sampling rate required to acquire and stably recover sparse s...
Laurent Jacques, Jason N. Laska, Petros Boufounos,...
— The new theory of compressive sensing enables direct analog-to-information conversion of compressible signals at subNyquist acquisition rates. We develop new theory, algorithms...
Jason N. Laska, Sami Kirolos, Marco F. Duarte, Tam...
Abstract—Compressive sampling (CS) has emerged as significant signal processing framework to acquire and reconstruct sparse signals at rates significantly below the Nyquist rate...
When sampling signals below the Nyquist rate, efficient and accurate reconstruction is nevertheless possible, whenever the sampling system is well behaved and the signal is well ...