The 2- 1 compressed sensing minimization problem can be solved efficiently by gradient projection. In imaging applications, the signal of interest corresponds to nonnegative pixel...
Zachary T. Harmany, Daniel Thompson, Rebecca Wille...
Abstract-- We consider approximations of signals by the elements of a frame in a complex vector space of dimension N and formulate both the noiseless and the noisy sparse represent...
—We show that, via temporal modulation, one can observe and capture a high-speed periodic video well beyond the abilities of a low-frame-rate camera. By strobing the exposure wit...
In this paper we model the components of the compressive sensing (CS) problem using the Bayesian framework by utilizing a hierarchical form of the Laplace prior to model sparsity ...
S. Derin Babacan, Rafael Molina, Aggelos K. Katsag...
Compressive sensing (CS) is an alternative to Shannon/Nyquist sampling for acquisition of sparse or compressible signals that can be well approximated by just K N elements from a...
Richard G. Baraniuk, Volkan Cevher, Marco F. Duart...