We develop a theory for the temporal integration of visual motion motivated by psychophysical experiments. The theory proposes that input data are temporally grouped and used to p...
Alan L. Yuille, Pierre-Yves Burgi, Norberto M. Grz...
Kernel density estimation (KDE) has been used in many computational intelligence and computer vision applications. In this paper we propose a Bayesian estimation method for findin...
DNA hybridization arrays simultaneously measure the expression level for thousands of genes. These measurements provide a "snapshot" of transcription levels within the c...
Nir Friedman, Michal Linial, Iftach Nachman, Dana ...
— In this paper, we present an approach allowing a robot to learn a generative model of its own physical body from scratch using self-perception with a single monocular camera. O...
In recent years, a number of algorithms have been developed for learning the structure of Bayesian networks from data. In this paper we apply some of these algorithms to a realist...
Xiaofeng Wu, Peter J. F. Lucas, Susan Kerr, Roelf ...