Nearest neighborhood consistency is an important concept in statistical pattern recognition, which underlies the well-known k-nearest neighbor method. In this paper, we combine th...
—In a wireless network with node exclusive spectrum sharing, two popular schedules are maximum weight matching (MWM) schedule and maximum size matching (MSM) schedule. The former...
The min-sum k-clustering problem is to partition a metric space (P, d) into k clusters C1, . . . , Ck ⊆ P such that k i=1 p,q∈Ci d(p, q) is minimized. We show the first effi...
Approximate Nearest Neighbor (ANN) methods such as Locality Sensitive Hashing, Semantic Hashing, and Spectral Hashing, provide computationally ecient procedures for nding objects...
In this paper we present a generative model and learning procedure for unsupervised video clustering into scenes. The work addresses two important problems: realistic modeling of ...
Nemanja Petrovic, Aleksandar Ivanovic, Nebojsa Joj...