Sciweavers

1323 search results - page 157 / 265
» Feature Extraction for Machine Learning: Logic-Probabilistic...
Sort
View
CVPR
2003
IEEE
16 years 2 months ago
Kernel Principal Angles for Classification Machines with Applications to Image Sequence Interpretation
We consider the problem of learning with instances defined over a space of sets of vectors. We derive a new positive definite kernel f(A B) defined over pairs of matrices A B base...
Lior Wolf, Amnon Shashua
97
Voted
ICML
2009
IEEE
16 years 1 months ago
Learning Markov logic network structure via hypergraph lifting
Markov logic networks (MLNs) combine logic and probability by attaching weights to first-order clauses, and viewing these as templates for features of Markov networks. Learning ML...
Stanley Kok, Pedro Domingos
ECML
2006
Springer
15 years 4 months ago
Unsupervised Multiple-Instance Learning for Functional Profiling of Genomic Data
Multiple-instance learning (MIL) is a popular concept among the AI community to support supervised learning applications in situations where only incomplete knowledge is available....
Corneliu Henegar, Karine Clément, Jean-Dani...
98
Voted
ICML
2009
IEEE
16 years 1 months ago
Boosting with structural sparsity
Despite popular belief, boosting algorithms and related coordinate descent methods are prone to overfitting. We derive modifications to AdaBoost and related gradient-based coordin...
John Duchi, Yoram Singer
CVPR
2009
IEEE
16 years 7 months ago
Let the Kernel Figure it Out; Principled Learning of Pre-processing for Kernel Classifiers
Most modern computer vision systems for high-level tasks, such as image classification, object recognition and segmentation, are based on learning algorithms that are able to se...
Peter V. Gehler, Sebastian Nowozin