Current studies have demonstrated that the representational power of predictive state representations (PSRs) is at least equal to the one of partially observable Markov decision p...
Abdeslam Boularias, Masoumeh T. Izadi, Brahim Chai...
Knowledge transfer has been suggested as a useful approach for solving large Markov Decision Processes. The main idea is to compute a decision-making policy in one environment and...
Bayesian Reinforcement Learning has generated substantial interest recently, as it provides an elegant solution to the exploration-exploitation trade-off in reinforcement learning...
Although many real-world stochastic planning problems are more naturally formulated by hybrid models with both discrete and continuous variables, current state-of-the-art methods ...
Carlos Guestrin, Milos Hauskrecht, Branislav Kveto...
We study the problem of dynamic spectrum sensing and access in cognitive radio systems as a partially observed Markov decision process (POMDP). A group of cognitive users cooperati...
Jayakrishnan Unnikrishnan, Venugopal V. Veeravalli