Sciweavers

148 search results - page 4 / 30
» Feature space perspectives for learning the kernel
Sort
View
NIPS
2004
15 years 1 months ago
The Laplacian PDF Distance: A Cost Function for Clustering in a Kernel Feature Space
A new distance measure between probability density functions (pdfs) is introduced, which we refer to as the Laplacian pdf distance. The Laplacian pdf distance exhibits a remarkabl...
Robert Jenssen, Deniz Erdogmus, José Carlos...
EMNLP
2009
14 years 9 months ago
Reverse Engineering of Tree Kernel Feature Spaces
We present a framework to extract the most important features (tree fragments) from a Tree Kernel (TK) space according to their importance in the target kernelbased machine, e.g. ...
Daniele Pighin, Alessandro Moschitti
ECAI
2010
Springer
14 years 9 months ago
Feature Selection by Approximating the Markov Blanket in a Kernel-Induced Space
The proposed feature selection method aims to find a minimum subset of the most informative variables for classification/regression by efficiently approximating the Markov Blanket ...
Qiang Lou, Zoran Obradovic
102
Voted
ICML
2003
IEEE
16 years 14 days ago
The Pre-Image Problem in Kernel Methods
In this paper, we address the problem of finding the pre-image of a feature vector in the feature space induced by a kernel. This is of central importance in some kernel applicatio...
James T. Kwok, Ivor W. Tsang
ICML
2006
IEEE
16 years 14 days ago
Optimal kernel selection in Kernel Fisher discriminant analysis
In Kernel Fisher discriminant analysis (KFDA), we carry out Fisher linear discriminant analysis in a high dimensional feature space defined implicitly by a kernel. The performance...
Seung-Jean Kim, Alessandro Magnani, Stephen P. Boy...