Motivated by the application of seismic inversion in the petroleum industry we consider a hidden Markov model with two hidden layers. The bottom layer is a Markov chain and given ...
We present a learning algorithm for non-parametric hidden Markov models with continuous state and observation spaces. All necessary probability densities are approximated using sa...
We study a time series model that can be viewed as a decision tree with Markov temporal structure. The model is intractable for exact calculations, thus we utilize variational app...
Michael I. Jordan, Zoubin Ghahramani, Lawrence K. ...
In this paper we describe a machine learning approach for acquiring a model of a robot behaviour from raw sensor data. We are interested in automating the acquisition of behaviour...
Maria Fox, Malik Ghallab, Guillaume Infantes, Dere...
This paper explains how Partially Observable Markov Decision Processes (POMDPs) can provide a principled mathematical framework for modelling the inherent uncertainty in spoken di...
Steve Young, Milica Gasic, Simon Keizer, Fran&cced...