We derive two variants of a semi-supervised model for fine-grained sentiment analysis. Both models leverage abundant natural supervision in the form of review ratings, as well as...
Object recognition is challenging due to high intra-class
variability caused, e.g., by articulation, viewpoint changes,
and partial occlusion. Successful methods need to strike a...
In dimensionality reduction approaches, the data are typically embedded in a Euclidean latent space. However for some data sets this is inappropriate. For example, in human motion...
Raquel Urtasun, David J. Fleet, Andreas Geiger, Jo...
We describe a method for recovering 3D human body pose from silhouettes. Our model is based on learning a latent space using the Gaussian Process Latent Variable Model (GP-LVM) [1]...
Carl Henrik Ek, Philip H. S. Torr, Neil D. Lawrenc...
Background: Discovering the genetic basis of common genetic diseases in the human genome represents a public health issue. However, the dimensionality of the genetic data (up to 1...
Raphael Mourad, Christine Sinoquet, Philippe Leray