The representation used by a learning algorithm introduces a bias which is more or less well-suited to any given learning problem. It is well known that, across all possible probl...
In this work, a new learning paradigm called target selection is proposed, which can be used to test for associations between a single genetic variable and a multidimensional, qua...
Johannes Mohr, Sambu Seo, Imke Puis, Andreas Heinz...
We present a novel approach to learn a kernelbased regression function. It is based on the use of conical combinations of data-based parameterized kernels and on a new stochastic ...
Pierre Machart, Thomas Peel, Liva Ralaivola, Sandr...
Ranking algorithms, whose goal is to appropriately order a set of objects/documents, are an important component of information retrieval systems. Previous work on ranking algorith...
We give an algorithm that with high probability properly learns random monotone DNF with t(n) terms of length log t(n) under the uniform distribution on the Boolean cube {0, 1}n ....
Jeffrey C. Jackson, Homin K. Lee, Rocco A. Servedi...