We use techniques from sample-complexity in machine learning to reduce problems of incentive-compatible mechanism design to standard algorithmic questions, for a wide variety of r...
Maria-Florina Balcan, Avrim Blum, Jason D. Hartlin...
In this work, we propose a variation of a direct reinforcement learning algorithm, suitable for usage with spiking neurons based on the spike response model (SRM). The SRM is a bi...
Murilo Saraiva de Queiroz, Roberto Coelho de Berr&...
We consider the least-square regression problem with regularization by a block 1-norm, that is, a sum of Euclidean norms over spaces of dimensions larger than one. This problem, r...
Neural gas (NG) constitutes a very robust clustering algorithm which can be derived as stochastic gradient descent from a cost function closely connected to the quantization error...
Barbara Hammer, Alexander Hasenfuss, Thomas Villma...
Evolutionary design of neural networks has shown a great potential as a powerful optimization tool. However, most evolutionary neural networks have not taken advantage of the fact ...