Sciweavers

112 search results - page 4 / 23
» Gaussian Processes for Machine Learning (GPML) Toolbox
Sort
View
73
Voted
ICML
2005
IEEE
15 years 10 months ago
Preference learning with Gaussian processes
In this paper, we propose a probabilistic kernel approach to preference learning based on Gaussian processes. A new likelihood function is proposed to capture the preference relat...
Wei Chu, Zoubin Ghahramani
ICML
2005
IEEE
15 years 10 months ago
Reinforcement learning with Gaussian processes
Gaussian Process Temporal Difference (GPTD) learning offers a Bayesian solution to the policy evaluation problem of reinforcement learning. In this paper we extend the GPTD framew...
Yaakov Engel, Shie Mannor, Ron Meir
105
Voted
DSMML
2004
Springer
15 years 2 months ago
Understanding Gaussian Process Regression Using the Equivalent Kernel
The equivalent kernel [1] is a way of understanding how Gaussian process regression works for large sample sizes based on a continuum limit. In this paper we show how to approximat...
Peter Sollich, Christopher K. I. Williams
92
Voted
DSMML
2004
Springer
15 years 2 months ago
Extensions of the Informative Vector Machine
The informative vector machine (IVM) is a practical method for Gaussian process regression and classification. The IVM produces a sparse approximation to a Gaussian process by com...
Neil D. Lawrence, John C. Platt, Michael I. Jordan
DAGM
2010
Springer
14 years 10 months ago
Gaussian Mixture Modeling with Gaussian Process Latent Variable Models
Density modeling is notoriously difficult for high dimensional data. One approach to the problem is to search for a lower dimensional manifold which captures the main characteristi...
Hannes Nickisch, Carl Edward Rasmussen