Sciweavers

112 search results - page 5 / 23
» Gaussian Processes for Machine Learning (GPML) Toolbox
Sort
View
MLMI
2007
Springer
15 years 3 months ago
Gaussian Process Latent Variable Models for Human Pose Estimation
We describe a method for recovering 3D human body pose from silhouettes. Our model is based on learning a latent space using the Gaussian Process Latent Variable Model (GP-LVM) [1]...
Carl Henrik Ek, Philip H. S. Torr, Neil D. Lawrenc...
ICML
2007
IEEE
15 years 10 months ago
Hierarchical Gaussian process latent variable models
The Gaussian process latent variable model (GP-LVM) is a powerful approach for probabilistic modelling of high dimensional data through dimensional reduction. In this paper we ext...
Neil D. Lawrence, Andrew J. Moore
ICML
2005
IEEE
15 years 10 months ago
Heteroscedastic Gaussian process regression
This paper presents an algorithm to estimate simultaneously both mean and variance of a non parametric regression problem. The key point is that we are able to estimate variance l...
Alexander J. Smola, Quoc V. Le, Stéphane Ca...
88
Voted
DSMML
2004
Springer
15 years 2 months ago
Can Gaussian Process Regression Be Made Robust Against Model Mismatch?
Learning curves for Gaussian process (GP) regression can be strongly affected by a mismatch between the ‘student’ model and the ‘teacher’ (true data generation process), e...
Peter Sollich
ICML
2009
IEEE
15 years 10 months ago
Tractable nonparametric Bayesian inference in Poisson processes with Gaussian process intensities
The inhomogeneous Poisson process is a point process that has varying intensity across its domain (usually time or space). For nonparametric Bayesian modeling, the Gaussian proces...
Ryan Prescott Adams, Iain Murray, David J. C. MacK...