Sciweavers

1900 search results - page 18 / 380
» Gaussian Processes for Machine Learning
Sort
View
117
Voted
ICML
2006
IEEE
16 years 2 months ago
Probabilistic inference for solving discrete and continuous state Markov Decision Processes
Inference in Markov Decision Processes has recently received interest as a means to infer goals of an observed action, policy recognition, and also as a tool to compute policies. ...
Marc Toussaint, Amos J. Storkey
NIPS
2004
15 years 3 months ago
Learning Gaussian Process Kernels via Hierarchical Bayes
We present a novel method for learning with Gaussian process regression in a hierarchical Bayesian framework. In a first step, kernel matrices on a fixed set of input points are l...
Anton Schwaighofer, Volker Tresp, Kai Yu
ILP
2003
Springer
15 years 7 months ago
Graph Kernels and Gaussian Processes for Relational Reinforcement Learning
RRL is a relational reinforcement learning system based on Q-learning in relational state-action spaces. It aims to enable agents to learn how to act in an environment that has no ...
Thomas Gärtner, Kurt Driessens, Jan Ramon
NIPS
2008
15 years 3 months ago
Multi-task Gaussian Process Learning of Robot Inverse Dynamics
The inverse dynamics problem for a robotic manipulator is to compute the torques needed at the joints to drive it along a given trajectory; it is beneficial to be able to learn th...
Kian Ming Adam Chai, Christopher K. I. Williams, S...
NIPS
2007
15 years 3 months ago
Using Deep Belief Nets to Learn Covariance Kernels for Gaussian Processes
We show how to use unlabeled data and a deep belief net (DBN) to learn a good covariance kernel for a Gaussian process. We first learn a deep generative model of the unlabeled da...
Ruslan Salakhutdinov, Geoffrey E. Hinton