Sciweavers

132 search results - page 12 / 27
» Generalization in Reinforcement Learning: Safely Approximati...
Sort
View
NIPS
1996
15 years 29 days ago
Multidimensional Triangulation and Interpolation for Reinforcement Learning
Dynamic Programming, Q-learning and other discrete Markov Decision Process solvers can be applied to continuous d-dimensional state-spaces by quantizing the state space into an arr...
Scott Davies
ATAL
2007
Springer
15 years 5 months ago
Reducing the complexity of multiagent reinforcement learning
It is known that the complexity of the reinforcement learning algorithms, such as Q-learning, may be exponential in the number of environment’s states. It was shown, however, th...
Andriy Burkov, Brahim Chaib-draa
NIPS
2001
15 years 1 months ago
Variance Reduction Techniques for Gradient Estimates in Reinforcement Learning
Policy gradient methods for reinforcement learning avoid some of the undesirable properties of the value function approaches, such as policy degradation (Baxter and Bartlett, 2001...
Evan Greensmith, Peter L. Bartlett, Jonathan Baxte...
ICRA
2009
IEEE
259views Robotics» more  ICRA 2009»
15 years 6 months ago
Constructing action set from basis functions for reinforcement learning of robot control
Abstract— Continuous action sets are used in many reinforcement learning (RL) applications in robot control since the control input is continuous. However, discrete action sets a...
Akihiko Yamaguchi, Jun Takamatsu, Tsukasa Ogasawar...
ICML
2008
IEEE
16 years 14 days ago
Reinforcement learning in the presence of rare events
We consider the task of reinforcement learning in an environment in which rare significant events occur independently of the actions selected by the controlling agent. If these ev...
Jordan Frank, Shie Mannor, Doina Precup