Sciweavers

132 search results - page 15 / 27
» Generalization in Reinforcement Learning: Safely Approximati...
Sort
View
82
Voted
ATAL
2008
Springer
15 years 1 months ago
Adaptive Kanerva-based function approximation for multi-agent systems
In this paper, we show how adaptive prototype optimization can be used to improve the performance of function approximation based on Kanerva Coding when solving largescale instanc...
Cheng Wu, Waleed Meleis
AI
1998
Springer
14 years 11 months ago
Model-Based Average Reward Reinforcement Learning
Reinforcement Learning (RL) is the study of programs that improve their performance by receiving rewards and punishments from the environment. Most RL methods optimize the discoun...
Prasad Tadepalli, DoKyeong Ok
101
Voted
NIPS
2007
15 years 1 months ago
Stable Dual Dynamic Programming
Recently, we have introduced a novel approach to dynamic programming and reinforcement learning that is based on maintaining explicit representations of stationary distributions i...
Tao Wang, Daniel J. Lizotte, Michael H. Bowling, D...
NIPS
2007
15 years 1 months ago
Reinforcement Learning in Continuous Action Spaces through Sequential Monte Carlo Methods
Learning in real-world domains often requires to deal with continuous state and action spaces. Although many solutions have been proposed to apply Reinforcement Learning algorithm...
Alessandro Lazaric, Marcello Restelli, Andrea Bona...
ATAL
2008
Springer
15 years 1 months ago
Sequential decision making in repeated coalition formation under uncertainty
The problem of coalition formation when agents are uncertain about the types or capabilities of their potential partners is a critical one. In [3] a Bayesian reinforcement learnin...
Georgios Chalkiadakis, Craig Boutilier