Sciweavers

191 search results - page 4 / 39
» Generalized Power Method for Sparse Principal Component Anal...
Sort
View
AMCS
2008
146views Mathematics» more  AMCS 2008»
14 years 9 months ago
Fault Detection and Isolation with Robust Principal Component Analysis
Principal component analysis (PCA) is a powerful fault detection and isolation method. However, the classical PCA which is based on the estimation of the sample mean and covariance...
Yvon Tharrault, Gilles Mourot, José Ragot, ...
GPB
2010
231views Solid Modeling» more  GPB 2010»
14 years 7 months ago
Mining Gene Expression Profiles: An Integrated Implementation of Kernel Principal Component Analysis and Singular Value Decompos
The detection of genes that show similar profiles under different experimental conditions is often an initial step in inferring the biological significance of such genes. Visualiz...
Ferran Reverter, Esteban Vegas, Pedro Sánch...
APPT
2005
Springer
15 years 3 months ago
Principal Component Analysis for Distributed Data Sets with Updating
Identifying the patterns of large data sets is a key requirement in data mining. A powerful technique for this purpose is the principal component analysis (PCA). PCA-based clusteri...
Zheng-Jian Bai, Raymond H. Chan, Franklin T. Luk
NIPS
2008
14 years 11 months ago
Robust Kernel Principal Component Analysis
Kernel Principal Component Analysis (KPCA) is a popular generalization of linear PCA that allows non-linear feature extraction. In KPCA, data in the input space is mapped to highe...
Minh Hoai Nguyen, Fernando De la Torre
BMCBI
2005
201views more  BMCBI 2005»
14 years 9 months ago
Principal component analysis for predicting transcription-factor binding motifs from array-derived data
Background: The responses to interleukin 1 (IL-1) in human chondrocytes constitute a complex regulatory mechanism, where multiple transcription factors interact combinatorially to...
Yunlong Liu, Matthew P. Vincenti, Hiroki Yokota