Sciweavers

191 search results - page 7 / 39
» Generalized Power Method for Sparse Principal Component Anal...
Sort
View
ISNN
2009
Springer
15 years 4 months ago
Nonlinear Component Analysis for Large-Scale Data Set Using Fixed-Point Algorithm
Abstract. Nonlinear component analysis is a popular nonlinear feature extraction method. It generally uses eigen-decomposition technique to extract the principal components. But th...
Weiya Shi, Yue-Fei Guo
KDD
2001
ACM
187views Data Mining» more  KDD 2001»
15 years 10 months ago
Random projection in dimensionality reduction: applications to image and text data
Random projections have recently emerged as a powerful method for dimensionality reduction. Theoretical results indicate that the method preserves distances quite nicely; however,...
Ella Bingham, Heikki Mannila
IJCNN
2007
IEEE
15 years 3 months ago
Branching Principal Components: Elastic Graphs, Topological Grammars and Metro Maps
— To approximate complex data, we propose new type of low-dimensional “principal object”: principal cubic complex. This complex is a generalization of linear and nonlinear pr...
Alexander N. Gorban, Neil R. Sumner, Andrei Yu. Zi...
SDM
2010
SIAM
168views Data Mining» more  SDM 2010»
14 years 8 months ago
Convex Principal Feature Selection
A popular approach for dimensionality reduction and data analysis is principal component analysis (PCA). A limiting factor with PCA is that it does not inform us on which of the o...
Mahdokht Masaeli, Yan Yan, Ying Cui, Glenn Fung, J...
ADBIS
2003
Springer
108views Database» more  ADBIS 2003»
15 years 2 months ago
Dynamic Integration of Classifiers in the Space of Principal Components
Recent research has shown the integration of multiple classifiers to be one of the most important directions in machine learning and data mining. It was shown that, for an ensemble...
Alexey Tsymbal, Mykola Pechenizkiy, Seppo Puuronen...