Sciweavers

65 search results - page 5 / 13
» Gradient Descent for General Reinforcement Learning
Sort
View
ICRA
2010
IEEE
145views Robotics» more  ICRA 2010»
14 years 8 months ago
Reinforcement learning of motor skills in high dimensions: A path integral approach
— Reinforcement learning (RL) is one of the most general approaches to learning control. Its applicability to complex motor systems, however, has been largely impossible so far d...
Evangelos Theodorou, Jonas Buchli, Stefan Schaal
ICML
2009
IEEE
15 years 10 months ago
More generality in efficient multiple kernel learning
Recent advances in Multiple Kernel Learning (MKL) have positioned it as an attractive tool for tackling many supervised learning tasks. The development of efficient gradient desce...
Manik Varma, Bodla Rakesh Babu
NN
2002
Springer
125views Neural Networks» more  NN 2002»
14 years 9 months ago
Generalized relevance learning vector quantization
We propose a new scheme for enlarging generalized learning vector quantization (GLVQ) with weighting factors for the input dimensions. The factors allow an appropriate scaling of ...
Barbara Hammer, Thomas Villmann
ECML
2007
Springer
15 years 3 months ago
Policy Gradient Critics
We present Policy Gradient Actor-Critic (PGAC), a new model-free Reinforcement Learning (RL) method for creating limited-memory stochastic policies for Partially Observable Markov ...
Daan Wierstra, Jürgen Schmidhuber
KDD
2009
ACM
150views Data Mining» more  KDD 2009»
15 years 10 months ago
Information theoretic regularization for semi-supervised boosting
We present novel semi-supervised boosting algorithms that incrementally build linear combinations of weak classifiers through generic functional gradient descent using both labele...
Lei Zheng, Shaojun Wang, Yan Liu, Chi-Hoon Lee