Dimensionality reduction is a statistical tool commonly used to map high-dimensional data into lower a dimensionality. The transformed data is typically more suitable for regressi...
Bill Kapralos, Nathan Mekuz, Agnieszka Kopinska, S...
Semi-definite Embedding (SDE) has been a recently proposed to maximize the sum of pair wise squared distances between outputs while the input data and outputs are locally isometri...
Benyu Zhang, Jun Yan, Ning Liu, QianSheng Cheng, Z...
Locally linear embedding (LLE) is a recently proposed method for unsupervised nonlinear dimensionality reduction. It has a number of attractive features: it does not require an ite...
Dick de Ridder, Olga Kouropteva, Oleg Okun, Matti ...
Many natural image sets are samples of a low-dimensional manifold in the space of all possible images. When the image data set is not a linear combination of a small number of bas...
Multiple view data, which have multiple representations from different feature spaces or graph spaces, arise in various data mining applications such as information retrieval, bio...