Categorizing multiple objects in images is essentially a structured prediction problem: the label of an object is in general dependent on the labels of other objects in the image....
Qinfeng Shi, Luping Zhou, Li Cheng, Dale Schuurman...
Deep belief networks are a powerful way to model complex probability distributions. However, it is difficult to learn the structure of a belief network, particularly one with hidd...
Ryan Prescott Adams, Hanna M. Wallach, Zoubin Ghah...
Most probabilistic inference algorithms are specified and processed on a propositional level. In the last decade, many proposals for algorithms accepting first-order specificat...
The FastInf C++ library is designed to perform memory and time efficient approximate inference in large-scale discrete undirected graphical models. The focus of the library is pro...
Ariel Jaimovich, Ofer Meshi, Ian McGraw, Gal Elida...
Information graphics, such as bar charts and line graphs, that appear in popular media generally have a message that they are intended to convey. We have developed a novel plan inf...