This paper explores two classes of model adaptation methods for Web search ranking: Model Interpolation and error-driven learning approaches based on a boosting algorithm. The res...
Jianfeng Gao, Qiang Wu, Chris Burges, Krysta Marie...
Abstract. Current text classification systems typically use term stems for representing document content. Semantic Web technologies allow the usage of features on a higher semantic...
We describe a new method for learning the conditional probability distribution of a binary-valued variable from labelled training examples. Our proposed Compositional Noisy-Logica...
Important ecological phenomena are often observed indirectly. Consequently, probabilistic latent variable models provide an important tool, because they can include explicit model...
Rebecca A. Hutchinson, Li-Ping Liu, Thomas G. Diet...
We present a novel boosting algorithm where temporal consistency is addressed in a short-term way. Although temporal correlation of observed data may be an important cue for classi...
Pedro Canotilho Ribeiro, Plinio Moreno, José...