Sciweavers

141 search results - page 11 / 29
» Grouping and dimensionality reduction by locally linear embe...
Sort
View
ICPR
2006
IEEE
16 years 2 months ago
Dimensionality Reduction with Adaptive Kernels
1 A kernel determines the inductive bias of a learning algorithm on a specific data set, and it is beneficial to design specific kernel for a given data set. In this work, we propo...
Shuicheng Yan, Xiaoou Tang
IVC
2007
164views more  IVC 2007»
15 years 1 months ago
Locality preserving CCA with applications to data visualization and pose estimation
- Canonical correlation analysis (CCA) is a major linear subspace approach to dimensionality reduction and has been applied to image processing, pose estimation and other fields. H...
Tingkai Sun, Songcan Chen
CVPR
2008
IEEE
16 years 3 months ago
Clustering and dimensionality reduction on Riemannian manifolds
We propose a novel algorithm for clustering data sampled from multiple submanifolds of a Riemannian manifold. First, we learn a representation of the data using generalizations of...
Alvina Goh, René Vidal
CVPR
2007
IEEE
16 years 3 months ago
Biased Manifold Embedding: A Framework for Person-Independent Head Pose Estimation
The estimation of head pose angle from face images is an integral component of face recognition systems, human computer interfaces and other human-centered computing applications....
Vineeth Nallure Balasubramanian, Jieping Ye, Sethu...
ICPR
2008
IEEE
16 years 2 months ago
Unsupervised image embedding using nonparametric statistics
Embedding images into a low dimensional space has a wide range of applications: visualization, clustering, and pre-processing for supervised learning. Traditional dimension reduct...
Guobiao Mei, Christian R. Shelton