Sciweavers

847 search results - page 10 / 170
» HITS is Principal Components Analysis
Sort
View
ICIP
2005
IEEE
15 years 6 months ago
View independent face recognition based on kernel principal component analysis of local parts
This paper presents a view independent face recognition method based on kernel principal component analysis (KPCA) of local parts. View changes induce large variation in feature s...
Koji Hotta
COLT
2004
Springer
15 years 5 months ago
Statistical Properties of Kernel Principal Component Analysis
The main goal of this paper is to prove inequalities on the reconstruction error for Kernel Principal Component Analysis. With respect to previous work on this topic, our contribu...
Laurent Zwald, Olivier Bousquet, Gilles Blanchard
NIPS
2008
15 years 1 months ago
Robust Kernel Principal Component Analysis
Kernel Principal Component Analysis (KPCA) is a popular generalization of linear PCA that allows non-linear feature extraction. In KPCA, data in the input space is mapped to highe...
Minh Hoai Nguyen, Fernando De la Torre
97
Voted
PAMI
2008
200views more  PAMI 2008»
15 years 9 days ago
Principal Component Analysis Based on L1-Norm Maximization
In data-analysis problems with a large number of dimension, principal component analysis based on L2-norm (L2PCA) is one of the most popular methods, but L2-PCA is sensitive to out...
Nojun Kwak
COLT
2010
Springer
14 years 10 months ago
Principal Component Analysis with Contaminated Data: The High Dimensional Case
We consider the dimensionality-reduction problem (finding a subspace approximation of observed data) for contaminated data in the high dimensional regime, where the number of obse...
Huan Xu, Constantine Caramanis, Shie Mannor