Background: The ever increasing sizes of population genetic datasets pose great challenges for population structure analysis. The Tracy-Widom (TW) statistical test is widely used ...
Principal component analysis (PCA) minimizes the sum of squared errors (L2-norm) and is sensitive to the presence of outliers. We propose a rotational invariant L1-norm PCA (R1-PC...
Chris H. Q. Ding, Ding Zhou, Xiaofeng He, Hongyuan...
Abstract. We present a method for learning feature descriptors using multiple images, motivated by the problems of mobile robot navigation and localization. The technique uses the ...
Jason Meltzer, Ming-Hsuan Yang, Rakesh Gupta, Stef...
In this paper, a multilinear formulation of the popular Principal Component Analysis (PCA) is proposed, named as multilinear PCA (MPCA), where the input can be not only vectors, b...
Anastasios N. Venetsanopoulos, Haiping Lu, Konstan...
In this paper, we develop an architecture for principal component analysis (PCA) to be used as an outlier detection method for high-speed network intrusion detection systems (NIDS...