Many computer vision tasks may be expressed as the problem of learning a mapping between image space and a parameter space. For example, in human body pose estimation, recent rese...
Ramanan Navaratnam, Andrew W. Fitzgibbon, Roberto ...
In this paper we present a novel approach for estimating featurespace maximum likelihood linear regression (fMLLR) transforms for full-covariance Gaussian models by directly maxim...
Arnab Ghoshal, Daniel Povey, Mohit Agarwal, Pinar ...
— We are interested in transferring control policies for arbitrary tasks from a human to a robot. Using interactive demonstration via teloperation as our transfer scenario, we ca...
While it is well-known that model can enhance the control performance in terms of precision or energy efficiency, the practical application has often been limited by the complexiti...
Duy Nguyen-Tuong, Jan Peters, Matthias Seeger, Ber...
We propose a fully Bayesian methodology for generalized kernel mixed models (GKMMs), which are extensions of generalized linear mixed models in the feature space induced by a repr...