Sciweavers

113 search results - page 14 / 23
» Hidden Markov Model} Induction by Bayesian Model Merging
Sort
View
72
Voted
CORR
2010
Springer
69views Education» more  CORR 2010»
14 years 9 months ago
Epistemic irrelevance in credal nets: the case of imprecise Markov trees
We focus on credal nets, which are graphical models that generalise Bayesian nets to imprecise probability. We replace the notion of strong independence commonly used in credal ne...
Gert de Cooman, Filip Hermans, Alessandro Antonucc...
ECAI
2004
Springer
15 years 3 months ago
Learning Complex and Sparse Events in Long Sequences
The Hierarchical Hidden Markov Model (HHMM) is a well formalized tool suitable to model complex patterns in long temporal or spatial sequences. Even if effective algorithms are ava...
Marco Botta, Ugo Galassi, Attilio Giordana
SSIAI
2000
IEEE
15 years 2 months ago
Unsupervised Dempster-Shafer Fusion of Dependent Sensors
This paper deals with the problem of statistical unsupervised fusion of dependent sensors with its potential applications to multisensor image segmentation. On the one hand, Bayes...
Wojciech Pieczynski
JMLR
2010
202views more  JMLR 2010»
14 years 4 months ago
Learning the Structure of Deep Sparse Graphical Models
Deep belief networks are a powerful way to model complex probability distributions. However, it is difficult to learn the structure of a belief network, particularly one with hidd...
Ryan Prescott Adams, Hanna M. Wallach, Zoubin Ghah...
CVPR
2000
IEEE
15 years 11 months ago
Impact of Dynamic Model Learning on Classification of Human Motion
The human figure exhibits complex and rich dynamic behavior that is both nonlinear and time-varying. However, most work on tracking and analysis of figure motion has employed eith...
Vladimir Pavlovic, James M. Rehg