Sciweavers

118 search results - page 6 / 24
» Hierarchic Bayesian models for kernel learning
Sort
View
COGSCI
2008
75views more  COGSCI 2008»
14 years 8 months ago
Exemplars, Prototypes, Similarities, and Rules in Category Representation: An Example of Hierarchical Bayesian Analysis
This article demonstrates the potential of using hierarchical Bayesian methods to relate models and data in the cognitive sciences. This is done using a worked example that consid...
Michael D. Lee, Wolf Vanpaemel
ICDM
2007
IEEE
184views Data Mining» more  ICDM 2007»
15 years 3 months ago
Bayesian Folding-In with Dirichlet Kernels for PLSI
Probabilistic latent semantic indexing (PLSI) represents documents of a collection as mixture proportions of latent topics, which are learned from the collection by an expectation...
Alexander Hinneburg, Hans-Henning Gabriel, Andr&eg...
CVPR
2007
IEEE
15 years 11 months ago
Unsupervised Activity Perception by Hierarchical Bayesian Models
We propose a novel unsupervised learning framework for activity perception. To understand activities in complicated scenes from visual data, we propose a hierarchical Bayesian mod...
Xiaogang Wang, Xiaoxu Ma, Eric Grimson
NIPS
2007
14 years 11 months ago
Hierarchical Penalization
Hierarchical penalization is a generic framework for incorporating prior information in the fitting of statistical models, when the explicative variables are organized in a hiera...
Marie Szafranski, Yves Grandvalet, Pierre Morizet-...
ICPR
2006
IEEE
15 years 10 months ago
On Kernel Selection in Relevance Vector Machines Using Stability Principle
In this paper we propose an alternative interpretation of Bayesian learning based on maximal evidence principle. We establish a notion of local evidence which can be viewed as a c...
Dmitry Kropotov, Nikita Ptashko, Oleg Vasiliev, Dm...