Abstract. Building visual recognition models that adapt across different domains is a challenging task for computer vision. While feature-learning machines in the form of hierarchi...
Amr Ahmed, Kai Yu, Wei Xu, Yihong Gong, Eric P. Xi...
This paper introduces the problem of combining multiple partitionings of a set of objects into a single consolidated clustering without accessing the features or algorithms that d...
In this paper, we address the problems of deformable object matching (alignment) and segmentation with cluttered background. We propose a novel hierarchical log-linear model (HLLM...
Long Zhu, Yuanhao Chen, Xingyao Ye, Alan L. Yuille
Point-sampled geometry has gained significant interest due to their simplicity. The lack of connectivity touted as a plus, however, creates difficulties in many operations like ge...
In this paper we present a novel method for parsing aerial images with a hierarchical and contextual model learned in a statistical framework. We learn hierarchies at the scene an...
Jake Porway, Kristy Wang, Benjamin Yao, Song Chun ...