Sciweavers

270 search results - page 6 / 54
» Hierarchical Gaussian process latent variable models
Sort
View
ICONIP
2007
14 years 11 months ago
Discovery of Linear Non-Gaussian Acyclic Models in the Presence of Latent Classes
Abstract. An effective way to examine causality is to conduct an experiment with random assignment. However, in many cases it is impossible or too expensive to perform controlled ...
Shohei Shimizu, Aapo Hyvärinen
CVPR
2011
IEEE
14 years 1 months ago
Nonlinear Shape Manifolds as Shape Priors in Level Set Segmentation and Tracking
We propose a novel nonlinear, probabilistic and variational method for adding shape information to level setbased segmentation and tracking. Unlike previous work, we represent sha...
Victor Prisacariu, Ian Reid
ICML
2010
IEEE
14 years 10 months ago
Gaussian Processes Multiple Instance Learning
This paper proposes a multiple instance learning (MIL) algorithm for Gaussian processes (GP). The GP-MIL model inherits two crucial benefits from GP: (i) a principle manner of lea...
Minyoung Kim, Fernando De la Torre
ICASSP
2008
IEEE
15 years 4 months ago
Generalized Gaussian Markov random field image restoration using variational distribution approximation
In this paper we propose novel algorithms for image restoration and parameter estimation with a Generalized Gaussian Markov Random Field prior utilizing variational distribution a...
S. Derin Babacan, Rafael Molina, Aggelos K. Katsag...
NIPS
2008
14 years 11 months ago
Sparse Convolved Gaussian Processes for Multi-output Regression
We present a sparse approximation approach for dependent output Gaussian processes (GP). Employing a latent function framework, we apply the convolution process formalism to estab...
Mauricio Alvarez, Neil D. Lawrence