Sciweavers

62 search results - page 9 / 13
» Hierarchical Memory-Based Reinforcement Learning
Sort
View
ICANN
2010
Springer
15 years 2 months ago
Exploring Continuous Action Spaces with Diffusion Trees for Reinforcement Learning
We propose a new approach for reinforcement learning in problems with continuous actions. Actions are sampled by means of a diffusion tree, which generates samples in the continuou...
Christian Vollmer, Erik Schaffernicht, Horst-Micha...
SGAI
2010
Springer
14 years 11 months ago
Hierarchical Traces for Reduced NSM Memory Requirements
This paper presents work on using hierarchical long term memory to reduce the memory requirements of nearest sequence memory (NSM) learning, a previously published, instance-based ...
Torbjørn S. Dahl
GECCO
2005
Springer
155views Optimization» more  GECCO 2005»
15 years 7 months ago
Co-evolving recurrent neurons learn deep memory POMDPs
Recurrent neural networks are theoretically capable of learning complex temporal sequences, but training them through gradient-descent is too slow and unstable for practical use i...
Faustino J. Gomez, Jürgen Schmidhuber
IROS
2006
IEEE
107views Robotics» more  IROS 2006»
15 years 7 months ago
Heterogeneous and Hierarchical Cooperative Learning via Combining Decision Trees
Abstract— Decision trees, being human readable and hierarchically structured, provide a suitable mean to derive state-space abstraction and simplify the inclusion of the availabl...
Masoud Asadpour, Majid Nili Ahmadabadi, Roland Sie...
CVPR
2011
IEEE
14 years 10 months ago
Shape Grammar Parsing via Reinforcement Learning
This paper tackles shape grammar parsing for facade segmentation using a novel optimization approach based on reinforcement learning (RL). To this end, we use a binary recursive g...
Olivier Teboul, Iasonas Kokkinos, Panagiotis Kouts...