We study the convergence of Markov Decision Processes made of a large number of objects to optimization problems on ordinary differential equations (ODE). We show that the optimal...
Recent research in decision theoretic planning has focussedon making the solution of Markov decision processes (MDPs) more feasible. We develop a family of algorithms for structur...
Craig Boutilier, Ronen I. Brafman, Christopher W. ...
Recent decision-theoric planning algorithms are able to find optimal solutions in large problems, using Factored Markov Decision Processes (fmdps). However, these algorithms need ...
Thomas Degris, Olivier Sigaud, Pierre-Henri Wuille...
Decentralized MDPs provide a powerful formal framework for planning in multi-agent systems, but the complexity of the model limits its usefulness. We study in this paper a class o...
Raphen Becker, Shlomo Zilberstein, Victor R. Lesse...
There has been substantial progress with formal models for sequential decision making by individual agents using the Markov decision process (MDP). However, similar treatment of m...
Raphen Becker, Shlomo Zilberstein, Victor R. Lesse...