Sciweavers

128 search results - page 10 / 26
» Hierarchically Optimal Average Reward Reinforcement Learning
Sort
View
ICML
2010
IEEE
14 years 10 months ago
Internal Rewards Mitigate Agent Boundedness
Abstract--Reinforcement learning (RL) research typically develops algorithms for helping an RL agent best achieve its goals-however they came to be defined--while ignoring the rela...
Jonathan Sorg, Satinder P. Singh, Richard Lewis
ICML
1997
IEEE
15 years 10 months ago
Hierarchical Explanation-Based Reinforcement Learning
Explanation-Based Reinforcement Learning (EBRL) was introduced by Dietterich and Flann as a way of combining the ability of Reinforcement Learning (RL) to learn optimal plans with...
Prasad Tadepalli, Thomas G. Dietterich
SGAI
2010
Springer
14 years 7 months ago
Hierarchical Traces for Reduced NSM Memory Requirements
This paper presents work on using hierarchical long term memory to reduce the memory requirements of nearest sequence memory (NSM) learning, a previously published, instance-based ...
Torbjørn S. Dahl
GECCO
2008
Springer
182views Optimization» more  GECCO 2008»
14 years 10 months ago
Scaling ant colony optimization with hierarchical reinforcement learning partitioning
This paper merges hierarchical reinforcement learning (HRL) with ant colony optimization (ACO) to produce a HRL ACO algorithm capable of generating solutions for large domains. Th...
Erik J. Dries, Gilbert L. Peterson