Sciweavers

45 search results - page 5 / 9
» High-level reinforcement learning in strategy games
Sort
View
ICML
2005
IEEE
15 years 10 months ago
Learning to compete, compromise, and cooperate in repeated general-sum games
Learning algorithms often obtain relatively low average payoffs in repeated general-sum games between other learning agents due to a focus on myopic best-response and one-shot Nas...
Jacob W. Crandall, Michael A. Goodrich
ATAL
2004
Springer
15 years 3 months ago
Best-Response Multiagent Learning in Non-Stationary Environments
This paper investigates a relatively new direction in Multiagent Reinforcement Learning. Most multiagent learning techniques focus on Nash equilibria as elements of both the learn...
Michael Weinberg, Jeffrey S. Rosenschein
93
Voted
FLAIRS
2008
14 years 12 months ago
Learning Continuous Action Models in a Real-Time Strategy Environment
Although several researchers have integrated methods for reinforcement learning (RL) with case-based reasoning (CBR) to model continuous action spaces, existing integrations typic...
Matthew Molineaux, David W. Aha, Philip Moore
ECAI
2006
Springer
15 years 1 months ago
Strategic Foresighted Learning in Competitive Multi-Agent Games
We describe a generalized Q-learning type algorithm for reinforcement learning in competitive multi-agent games. We make the observation that in a competitive setting with adaptive...
Pieter Jan't Hoen, Sander M. Bohte, Han La Poutr&e...
86
Voted
ECML
2004
Springer
15 years 3 months ago
Analyzing Multi-agent Reinforcement Learning Using Evolutionary Dynamics
In this paper, we show how the dynamics of Q-learning can be visualized and analyzed from a perspective of Evolutionary Dynamics (ED). More specifically, we show how ED can be use...
Pieter Jan't Hoen, Karl Tuyls