Sciweavers

28 search results - page 1 / 6
» How boosting the margin can also boost classifier complexity
Sort
View
83
Voted
ICML
2006
IEEE
15 years 10 months ago
How boosting the margin can also boost classifier complexity
Boosting methods are known not to usually overfit training data even as the size of the generated classifiers becomes large. Schapire et al. attempted to explain this phenomenon i...
Lev Reyzin, Robert E. Schapire
ICML
2004
IEEE
15 years 10 months ago
Leveraging the margin more carefully
Boosting is a popular approach for building accurate classifiers. Despite the initial popular belief, boosting algorithms do exhibit overfitting and are sensitive to label noise. ...
Nir Krause, Yoram Singer
ICPR
2008
IEEE
15 years 10 months ago
Training sequential on-line boosting classifier for visual tracking
On-line boosting allows to adapt a trained classifier to changing environmental conditions or to use sequentially available training data. Yet, two important problems in the on-li...
Helmut Grabner, Horst Bischof, Jan Sochman, Jiri M...
AAAI
1998
14 years 11 months ago
Boosting in the Limit: Maximizing the Margin of Learned Ensembles
The "minimum margin" of an ensemble classifier on a given training set is, roughly speaking, the smallest vote it gives to any correct training label. Recent work has sh...
Adam J. Grove, Dale Schuurmans
103
Voted
COLT
2000
Springer
15 years 1 months ago
PAC Analogues of Perceptron and Winnow via Boosting the Margin
We describe a novel family of PAC model algorithms for learning linear threshold functions. The new algorithms work by boosting a simple weak learner and exhibit complexity bounds...
Rocco A. Servedio