Sciweavers

187 search results - page 24 / 38
» Imitation and Reinforcement Learning in Agents with Heteroge...
Sort
View
105
Voted
ECML
2007
Springer
15 years 1 months ago
Efficient Continuous-Time Reinforcement Learning with Adaptive State Graphs
Abstract. We present a new reinforcement learning approach for deterministic continuous control problems in environments with unknown, arbitrary reward functions. The difficulty of...
Gerhard Neumann, Michael Pfeiffer, Wolfgang Maass
EWCBR
2008
Springer
14 years 11 months ago
Recognizing the Enemy: Combining Reinforcement Learning with Strategy Selection Using Case-Based Reasoning
This paper presents CBRetaliate, an agent that combines Case-Based Reasoning (CBR) and Reinforcement Learning (RL) algorithms. Unlike most previous work where RL is used to improve...
Bryan Auslander, Stephen Lee-Urban, Chad Hogg, H&e...
68
Voted
ICML
2008
IEEE
15 years 10 months ago
Reinforcement learning in the presence of rare events
We consider the task of reinforcement learning in an environment in which rare significant events occur independently of the actions selected by the controlling agent. If these ev...
Jordan Frank, Shie Mannor, Doina Precup
87
Voted
IJCAI
2001
14 years 10 months ago
R-MAX - A General Polynomial Time Algorithm for Near-Optimal Reinforcement Learning
R-max is a very simple model-based reinforcement learning algorithm which can attain near-optimal average reward in polynomial time. In R-max, the agent always maintains a complet...
Ronen I. Brafman, Moshe Tennenholtz
87
Voted
AAAI
1998
14 years 10 months ago
Tree Based Discretization for Continuous State Space Reinforcement Learning
Reinforcement learning is an effective technique for learning action policies in discrete stochastic environments, but its efficiency can decay exponentially with the size of the ...
William T. B. Uther, Manuela M. Veloso