Traditional dynamical systems used for motion tracking cannot effectively handle high dimensionality of the motion states and composite dynamics. In this paper, to address both is...
We present a new unsupervised method to learn unified probabilistic object models (POMs) which can be applied to classification, segmentation, and recognition. We formulate this a...
Yuanhao Chen, Long Zhu, Alan L. Yuille, HongJiang ...
Illuminant estimation from shadows typically relies on accurate segmentation of the shadows and knowledge of exact 3D geometry, while shadow estimation is difficult in the presen...
In this paper we describe a statistical method for the integration of an unlimited number of cues within a deformable model framework. We treat each cue as a random variable, each...
Siome Goldenstein, Christian Vogler, Dimitris N. M...
Given a query image of an object, our objective is to retrieve all instances of that object in a large (1M+) image database. We adopt the bag-of-visual-words architecture which ha...
Ondrej Chum, James Philbin, Josef Sivic, Michael I...