We study the problem of object classification when training
and test classes are disjoint, i.e. no training examples of
the target classes are available. This setup has hardly be...
Christoph H. Lampert, Hannes Nickisch, Stefan Harm...
Background: The four heterogeneous childhood cancers, neuroblastoma, non-Hodgkin lymphoma, rhabdomyosarcoma, and Ewing sarcoma present a similar histology of small round blue cell...
Nikhil R. Pal, Kripamoy Aguan, Animesh Sharma, Shu...
Transduction is an inference mechanism “from particular to particular”. Its application to classification tasks implies the use of both labeled (training) data and unlabeled (...
Inspired originally by the Learnable Evolution Model(LEM) [5], we investigate LEM(ID3), a hybrid of evolutionary search with ID3 decision tree learning. LEM(ID3) involves interleav...
Abstract— Meta-Learning has been used to predict the performance of learning algorithms based on descriptive features of the learning problems. Each training example in this cont...