Sciweavers

964 search results - page 27 / 193
» Incremental and Decremental Support Vector Machine Learning
Sort
View
COLT
1999
Springer
15 years 1 months ago
Covering Numbers for Support Vector Machines
—Support vector (SV) machines are linear classifiers that use the maximum margin hyperplane in a feature space defined by a kernel function. Until recently, the only bounds on th...
Ying Guo, Peter L. Bartlett, John Shawe-Taylor, Ro...
122
Voted
ICMCS
2000
IEEE
170views Multimedia» more  ICMCS 2000»
15 years 2 months ago
Update Relevant Image Weights for Content-Based Image Retrieval using Support Vector Machines
Relevance feedback [1] has been a powerful tool for interactive Content-Based Image Retrieval (CBIR). During the retrieval process, the user selects the most relevant images and p...
Qi Tian, Pengyu Hong, Thomas S. Huang
68
Voted
ICML
2008
IEEE
15 years 10 months ago
Stopping conditions for exact computation of leave-one-out error in support vector machines
We propose a new stopping condition for a Support Vector Machine (SVM) solver which precisely reflects the objective of the Leave-OneOut error computation. The stopping condition ...
Klaus-Robert Müller, Pavel Laskov, Vojtech Fr...
ICML
2004
IEEE
15 years 10 months ago
Robust feature induction for support vector machines
The goal of feature induction is to automatically create nonlinear combinations of existing features as additional input features to improve classification accuracy. Typically, no...
Rong Jin, Huan Liu
ML
2002
ACM
220views Machine Learning» more  ML 2002»
14 years 9 months ago
Bayesian Methods for Support Vector Machines: Evidence and Predictive Class Probabilities
I describe a framework for interpreting Support Vector Machines (SVMs) as maximum a posteriori (MAP) solutions to inference problems with Gaussian Process priors. This probabilisti...
Peter Sollich