Classic mixture models assume that the prevalence of the various mixture components is fixed and does not vary over time. This presents problems for applications where the goal is...
Xiuyao Song, Chris Jermaine, Sanjay Ranka, John Gu...
We propose a novel nonparametric Bayesian model, Dual Hierarchical Dirichlet Processes (Dual-HDP), for trajectory analysis and semantic region modeling in surveillance settings, i...
Xiaogang Wang, Keng Teck Ma, Gee Wah Ng, W. Eric L...
—Many complex dynamical phenomena can be effectively modeled by a system that switches among a set of conditionally linear dynamical modes. We consider two such models: the switc...
Emily B. Fox, Erik B. Sudderth, Michael I. Jordan,...
We develop the distance dependent Chinese restaurant process (CRP), a flexible class of distributions over partitions that allows for nonexchangeability. This class can be used to...
Abstract. This paper elaborates on an efficient approach for clustering discrete data by incrementally building multinomial mixture models through likelihood maximization using the...