The Dirichlet Process Mixture (DPM) models represent an attractive approach to modeling latent distributions parametrically. In DPM models the Dirichlet process (DP) is applied es...
Asma Rabaoui, Nicolas Viandier, Juliette Marais, E...
We propose the hierarchical Dirichlet process (HDP), a nonparametric Bayesian model for clustering problems involving multiple groups of data. Each group of data is modeled with a...
Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, ...
Information filtering has made considerable progress in recent years.The predominant approaches are content-based methods and collaborative methods. Researchers have largely conc...
The inhomogeneous Poisson process is a point process that has varying intensity across its domain (usually time or space). For nonparametric Bayesian modeling, the Gaussian proces...
Ryan Prescott Adams, Iain Murray, David J. C. MacK...
We propose a novel mixtures of Gaussian processes model in which the gating function is interconnected with a probabilistic logical model, in our case Markov logic networks. In th...