In this paper, we present an application of neural networks in the renewable energy domain. We have developed a methodology for the daily prediction of global solar radiation on a ...
Christophe Paoli, Cyril Voyant, Marc Muselli, Mari...
Abstract. A nonparametric Bayesian extension of Independent Components Analysis (ICA) is proposed where observed data Y is modelled as a linear superposition, G, of a potentially i...
Many probabilistic models introduce strong dependencies between variables using a latent multivariate Gaussian distribution or a Gaussian process. We present a new Markov chain Mo...
Iain Murray, Ryan Prescott Adams, David J. C. MacK...
In traditional framework of Compressive Sensing (CS), only sparse prior on the property of signals in time or frequency domain is adopted to guarantee the exact inverse recovery. ...
We propose a new unsupervised learning technique for extracting information from large text collections. We model documents as if they were generated by a two-stage stochastic pro...
Mark Steyvers, Padhraic Smyth, Michal Rosen-Zvi, T...