Practical experience has shown that in order to obtain the best possible performance, prior knowledge about invariances of a classification problem at hand ought to be incorporated...
Statistical learning methods are emerging as a valuable tool for decoding information from neural imaging data. The noisy signal and the limited number of training patterns that ar...
We introduce a framework, which we call Divide-by-2 (DB2), for extending support vector machines (SVM) to multi-class problems. DB2 offers an alternative to the standard one-again...
— Forecasting the tide level in the Venezia lagoon is a very compelling task. In this work we propose a new approach to the learning of tide level time series based on the local ...
E. Canestrelli, P. Canestrelli, Marco Corazza, Mau...
The kernel-parameter is one of the few tunable parameters in Support Vector machines, controlling the complexity of the resulting hypothesis. Its choice amounts to model selection...
Nello Cristianini, Colin Campbell, John Shawe-Tayl...