In this paper we present the results of a comparative study of linear and kernel-based methods for face recognition. The methods used for dimensionality reduction are Principal Co...
Himaanshu Gupta, Amit K. Agrawal, Tarun Pruthi, Ch...
—Support vector (SV) machines are linear classifiers that use the maximum margin hyperplane in a feature space defined by a kernel function. Until recently, the only bounds on th...
Ying Guo, Peter L. Bartlett, John Shawe-Taylor, Ro...
Background: This paper presents the use of Support Vector Machines (SVMs) for prediction and analysis of antisense oligonucleotide (AO) efficacy. The collected database comprises ...
Gustavo Camps-Valls, Alistair M. Chalk, Antonio J....
In this paper, we analyze the convergence of an iterative selftraining semi-supervised support vector machine (SVM) algorithm, which is designed for classi cation in small trainin...
In this study, we propose an improved semi-supervised support vector machine (SVM) based translation algorithm for brain-computer interface (BCI) systems, aiming at reducing the t...